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Hamil ton-Dirac  equations for a constrained Hamiltonian system are deduced 
from a variational principle. In the local problem for such systems an algorithm 
is proposed to obtain the final constraint manifold and the dynamical  vector 
field on it using vector fields on the phase space. The global problem is solved 
in terms of fiber bundles  associated with the problem. 

1. INTRODUCTION 

The geometric description of  a mechanical system is formulated in two 
different ways, classically called Lagrangian mechanics and Hamiltonian 
mechanics. In the first one, the determination of the system is made by its 
configuration space, a differentiable manifold M, and the Lagrangian of 
the system, which is a real function L defined on TM, the tangent bundle 
of  M. The Hamilton variational principle enables us to obtain the Euler- 
Lagrange equations and then we can calculate all the possible trajectories 
of  the system. 

In Hamiltonian mechanics, the objects are the configuration space M 
and the Hamiltonian of  the system H, which is a real function defined on 
the phase space T 'M,  the cotangent bundle of M. By means of  the canonical 
2-form on T*M we obtain the Hamiltonian vector field and by integration 
the trajectories of  the system. 

The relation between both formulations is the Legendre transformation, 
FL: TM-~ T*M. If  FL is a diffeomorphism, then one formulation is the 
image of  the other under that diffeomorphism. 

Gotay et al. (1978; Gotay and Nester, 1979, 1980) have studied the 
conditions for the existence of a Hamiltonian formulation associated with 
a Lagrangian one. They call such Lagrangians almost regular. 
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In this situation, the general problem is to consider that the image of 
the Legendre transformation is a proper submanifold of the cotangent 
bundle. We thus obtain Hamiltonian systems with constraints. 

The equations of  motion in this problem are the so-called Hamilton- 
Dirac equations and, in general, they have solution not in all T ' M ,  but 
only in a submanifold, the final constraint submanifold. This problem leads 
to the study of the secondary constraints. Gotay and Nester (1979) provide 
an algorithm to obtain the constraint submanifold where the problem can 
be solved, the PCA algorithm. 

I propose here an alternative method to obtain the solution of this 
problem using tangent vector fields in T * M  which satisfy the Hamilton- 
Dirac equations. This algorithm allows us to obtain the constraint submani- 
fold and the dynamical tangent vector field on that submanifold, if they exist. 

I begin with the study of the local problem; that is, I suppose that the 
image of  F L  is a submanifold of T * M  defined by the zeroes of a finite 
family of functions. In this case the algorithm is linear. Afterwards, I solve 
the global problem. 

This paper is organized into the following parts: 
Section 2: Statement of the problem and Hamilton-Dirac equations. 

In this section I state the problem and set the notations. I also obtain the 
Hamil ton-Dirac equations from a variational principle. 

Section 3: The local problem. Here the image of FL is a submanifold 
of  T * M  defined by a finite family of functions. I classify the constraints 
as first class and second class and develop the algorithm to obtain the 
constraint submanifold and the dynamical vector field on it. 

Section 4: The global problem. In this section I prove the existence of 
an algorithm to obtain the constraint submanifold and the dynamical vector 
field when the image of FL is any submanifold of the phase space. 

At the end of this section, I make a brief comparison with the Gotay 
algorithm and give an example. 

I use Abraham and Marsden (1978) and de Leon and Rodrigues (1985) 
as general references. The initial ideas come from Dirac (1950, 1964). A 
more physical approach is in Battle et aL (1986). A different one is in 
Lichnerowicz (1975). 

2. STATEMENT OF THE PROBLEM AND H A M I L T O N - D I R A C  
E Q U A T I O N S  

Let M be a differentiable manifold, dim M = m, and L: T M  ~ ~ a C ~ 
function [I write S ( M )  for the ring of  C ~ functions on the manifold M]. 
Here L is called the Lagrangian of the system. 
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Let FL: T M  ~ T * M  be the Legendre transformation associated with 
the Lagrangian L. 

Following Gotay  and Nester (1978), one says that L is almost regular 
if: 

(a) F L  is a submersion on a closed embedded submanifold Mo of 
T*M.  One calls Mo the manifold of  the pr imary constraints and puts 
dim Mo = 2m - too. 

(b) The fibers of  the mapping  FL are connected. 
In this case, Gotay  and Nester (1978) prove that there exists a Hamil- 

tonian formulation associated with the given Lagrangian L. In the following 
I only consider almost-regular Lagrangians. 

Let A: T M ~ R  be defined by A(x ,  u) = (FL(x ,  u))(x ,  u). Here A is the 
action of the Lagrangian L and E = A -  L is the energy of the system. 

Proposition (Gotay and Nester, 1978). I f  L is almost regular, then E 
is FL-projectable.  

Proof  Since the fibers of  FL are connected, we only have to prove that 
X ( E )  = 0 for any vector field X tangent to the fibers of  FL. 

But since FL preserves the fibers of  TM, we can use a canonical system 
of  coordinates in TM. Let (qi, v f) be one such system. 

We know that E = ~ v ~ OL/Ov ~ - L and that if X is vertical in TM, then 
X = }~ ),J O/Ov j. But if X is tangent to the fibers of  FL, then its components  
satisfy the relation ~ )t i 02L/Ov ~ Ov j = O, j = 1 , . . . ,  m. 

Now it is immediate to prove that X ( E )  = 0. [] 

Corollary. There exist functions H:  T * M  ~ ~ with H o FL  = E. [] 

Note that all the functions H with this property take the same values 
on Mo. In the sequel I show that the solution of the problem does not 
depend on the chosen function H, providing that H o F L =  E. Therefore, 
we can suppose we have chosen one and call it the Hamiltonian of the 
system. With this function H, the formulation of the problem is the following: 

Let or: [a, b] ~ Mo be a ditterentiable curve. Put #: [a, b] ~ Mo x ~ for 
the curve defined by # ( t ) =  (c~(t), t). Let d t c I l l ( M o X ~ )  be the pullback 
of the standard volume element in ~. 

Let 0 c f P ( T * M )  be the canonical 1-form on T * M  defined by 

0(U)=,/((T(p,r)~-*)(U)) for U ~  T(p.v)T*M 

where r*: T * M ~  M is the canonical projection. Put o )= -dO.  
For any curve cr: [a, b] ~ Mo, we have the functional 

cr~--> f~ O -  H dt 
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Definition. The varional problem associated with this functional for 
the curves o- such that o r (a )=  A and o-(b)= B, A and B fixed points in 
T ' M ,  is called Hami l ton-Di rac  variational problem. 

According to Steinberg (1964) if o- is a solution of  this problem then 

f L D ( O - H d t ) = O  

for every vector field D ~ ~(Mo)  with D ( A )  = O, D ( B )  = 0, where LD is the 
Lie derivative with respect to the vector field D. 

Proposition. I f  or is a solution of the Hami l ton-Di rac  variational prob- 
lem and o-' is the tangent vector to tr then: 

i*(i~,dO - dH)  = 0 

where i: M o ~  T * M  is the natural injection. 

Proof We have: 

O = I  L o ( O - H d t ) = I  i o ( d ( O - H d t ) ) + I  d ( i o ( O - H d t ) )  

but: 

f d(iD(O -- H dt)) = J~ 6"*(d(iD(O -- H dt))) 

= d ( # * ( i D ( O - H d t ) ) = O  

because D( a ) = 0, D( b ) = O. 
Then 

L O= i D ( d ( O - H d t ) )  = 6"*( iD(d(O-Hdt ) ) )  

= (dO - d H  ^ dt)(D, 6-') dt 
a 

= - I f  ~ iD(ie,(dO - d H  ^ dt)) dt 

but D is any vector field tangent to Mo which verifies D ( A )  = O, D ( B )  = O, 
so that: 

i*(ie,(dO - dH  ^ dt)) = 0 

Notice that 

i~,( dO - dH  ^ dt) = ie, dO - 6-'( H)  dt + dH 
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Then, using that io(6'(H) dt)--0 and to = -dO is the canonical 2-form on 
T 'M,  we have 

i*( io,w - dH) = 0 

or equivalently 

i*(i~,to-dH)=O �9 

2.1. Hamilton-Dirac Equations 

According to the above proposition, if Z is a tangent vector field to 
T*M whose integral curves are solutions of  the Hamilton-Dirac problem, 
then Z has to satisfy the following conditions: 

1. i * ( i zw-dH)=O.  
2. Z is tangent to Mo. 

These are the Hamilton-Dirac equations for Z. 

Remark. If  we change H b y / 4  with the condition FL*H = FL*I7I, this 
does not modify the solution of  the problem, because i*H =- i*IYl, and then 
the vector field Z is the same for H or/~r. 

Notice that we can now state the problem independently of  its 
Lagrangian origin, because only the manifold M, the submanifold M0 of 
T 'M,  and the Hamiltonian H are used. 

3. THE LOCAL PROBLEM 

In this section, I assume the following hypothesis: 

Hypothesis 1. The submanifold Mo is the set of zeros of a finite family 
of  functions &l, &2 . . . .  , ~b~, with dim M0 = 2m - too. The functions ~b~ are 
called primary constraints. 

Lemma. Let N be a differentiable manifold, dim N = n, and T be the 
submanifold defined by ~bl = (b2 . . . . .  (bh ---- 0, with dim T -= n - h = k, and 
q~, E S(N) .  Let i: T ~  N be the natural injection. 

If  to ~ 121(N) satisfies i*w = 0, then there exist functions f~ in S(N)  
with to (x )=~f~(x)  d(bi(x) for all x in T. 

Proof For a point p in T, there exists an open neighborhood U in N, 
p c U, and functions 4't, ~ 2 , - - . ,  4'~ such that ~bl . . . .  , ~bh, q q , . . . ,  0h form 
a local system in U. Then 

w[u = ~ f i  dcb~ + Z gJ d~Oj 

for some f i  and gJ in S(N).  
The condition i*w = 0  implies that gJ(x)=0 for all xE U n  T. Then 

w(x)=Y~f i (x)  ddpi(x) for all x~ Uc~ T. 



1410 Mufioz Lecanda 

If  p and q are two different points in T, U and V the corresponding 
neighborhoods, and f i  and f i  the associated functions, then f r  
for all y c U ~ V because d491, . . . ,  d(bh are independent. So the functions 
f~ are globally defined on T. We can extend them to all N because T is a 
closed submanifold. II. 

According to this lemma, the Hamilton-Dirac problem can be stated 
as follows. 

Is there any vector field Z ~ ~ ( T * M )  such that: 

1. Z is tangent to Mo. 
2. (izto - d H ) ( x )  = ~, f i ( x )  ddp~(x) if x ~ iV/o? 

This is the standard form of the Hamilton-Dirac equations. 
Observe that the form of this equations does not change if we choose 

another system of functions ~1, �9 �9 �9 ~r,o which define the same submanifold 
Mo. 

3.1. Geometric Interpretation of the Equations 

Consider the following vector fields on T ' M :  

X c ~ ( T * M )  such that ixto = d H  

Xi c ~ (  T* M ) such that ix/o = dqSi, i = 1 , . . . ,  mo 

These last vector fields are linearly independent at every point because 
so are dthi. 

With these vector fields we can enunciate the Hamilton-Dirac problem 
as follows. 

Are there functions f~ in S ( T * M ) ,  i = 1 , . . . ,  mo, such that the vector 
field 

Z = X + ~ f~Xi  

is tangent to Mo? 
The condition of being tangent to Mo is (Zga~)(x) = 0 for all x ~ Mo. 

We use the notation Z~b~ v 0 for that condition. 
Observe that if one X~ is tangent to Mo, then the corresponding 

coefficient f~ can be an arbitrary function. Then we can classify the con- 
straints into two different types. 

3.2. Classification of Constraints 

Definitions: 
Let ~ be the restriction of  to to the submodute generated by the vector 

fields X 1 , . . . ,  X ~ .  
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For x ~ Mo, we say that 4'i is a first-class constraint in x if Xi(x) is 
tangent to Mo, that is, (Xi4'j)(x) = 0, for j = 1 , . . . ,  too. 

In any other case we say that r is a second-class constraint. 

Proposition. 4'~ is a first-class constraint at x ~ Mo if and only if X~(x) 
is in the radical of  12(x). 

Proof The tangent vector X~(x) is in the radical of  ~2(x) if 
w(Xi, Xj)(x)=O for j = l , . . . , m o ,  that is, whenever (Xi4'j)(x)=O for 
j =  1 , . . . ,  mo. �9 

The following hypothesis is assumed in the rest of  this section. 

Hypothesis 2. (a) The dimension of the radical of  O(x)  is independent  
of  the point  x ~ Mo. Let ml -< mo be such dimension. 

(b) There exist functions f ~ S ( T * M ) ,  j =  1 , . . . ,  mo, i = l , . . . ,  m~ 
such that the vector fields 

Y/= Y. f~Xj, i = 1 , . . . ,  ml 

form a basis o f  the radical of f~(x) for all x c Mo, and there exists a minor 
of  the matrix (f~) whose determinant is different from zero at any point 
X E M o .  

Remark. Notice that locally (a) implies (b). 

Definitions: 
0 j Let 4 ' o , . . . ,  4 ' o  be functions defined by 4'~ =Y~ f~4'j, where f~ are the 

. . . ~ d  0 functions of  hypotheses 2b. Then d4' ~ 4'-,1 are independent  at any 
point of  Mo because so are Y1, .. -, Yml. So we can choose 4'm1+1,- �9 �9 , 0  4',,o0 
among 4 ' ~ , . . . ,  4',-o such that 4 ' o , . . . ,  4'0 0 define the submanifold Mo. 

We say that 4 ' ~ 1 6 2 1 7 6  I are first-class constraints and that 
0 0 Cm,+a , . . . ,  4'too are second-class constraints. 

The functions 4 ' o , . . . ,  4'0 0 are called pr imary constraints. 

Proposition. Let X ~ be vector fields on T*M such that (ixo)w = d4' ~ 
for i = 1 , . . . ,  too. Then: 

(a) I f  x ~ Mot then X ~  X~ generate the radical of  l~(x). 
(b) X ~ X ~ are tangent to M0. �9 . * ~  m 1 

Proof (a) We have d4' ~ = ~ f~ d4'j + ~ 4'j dff i for i = 1 , . . . ,  mo; then, if 
x is a point in Mo, 

d4'~ = E f~(x) d4"j(x) 

Then X~ = Y~(x), i= 1 , . . . ,  m~, and the result follows. 
(b) Direct consequence of  (a). �9 

The terminology of  first-class constraints for the functions 4'0 is not 
justified: They are first class at all points of  Mo. 
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3.3. Algorithm to Reduce the Dimension 

With the new set of  primary constraints r i = 1 , . . . ,  too, we state the 
problem as follows. 

Are there functions f~  e S ( T * M )  such that the vector field 

Z = X + ~ , f i X  ~ 

is tangent to Mo? 
Then the system to solve is 

o f~yo4o  X e j  + ~ j - - i  -~j ~ O, j = 1 . . . .  , mo 

That is, 

0 X e j  ~0 ,  j =  1 , . . . ,  m~ 

i 0 o f co(Xi ,  o X j ) ~ - X t ~ j ,  j > m l  

This system has a solution only at the points P of Mo such that 
(X4a ~ P) =0,  j = 1 , . . . ,  m~. 

Definitions: 
Let M1 be the submanifold of  Mo defined by X r  ~ = 0, j = 1 , . . . ,  ml. 
We say that X r 1 7 6  X r  ~ are secondary constraints. 

Remarks.  Observe that X r  ~ = {H, r This is the form in which Dirac 
(1964) wrote them. 

Observe that, on M1, the system has only one solution for f i ,  i > m~, 
because the matrix ~o(X ~ X~ i, j > ml,  has rank t o o - m l .  

Now, the situation is the same as at the beginning, that is, the Hamil ton-  
Dirac problem, but on the manifold M~ given by the zeroes of  the functions 
r  o o o �9 , ~bmo, X r  Xeml.  We must find an independent family, if it 
exists, in order to be in the same situation as at the beginning of this section. 

Then, following this method,  we have a chain of  submanifolds 

T* M D M o P  M1 D . �9 �9 

Any one of them is given by the zeroes of  a finite family of  functions and 
so we can iterate the process. 

This process is necessarily finite, because M is a finite-dimensional 
manifold. Then the only possible situations are: 

1. There exists an integer r > 0 such that Mr = ;~. 
2. There exists an integer r > 0  such that Mr is not empty, but 

dim Mr = 0. 
3. There exists an integer r > 0 such that Mr = Mr+h for all h > 0 and 

dim Mr > 0. 
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In the first case the problem has no solution. It is inconsistent, according 
to Dirac (1964). In the second one there is no dynamics, and in the third 
one we obtain the final constraint manifold. 

Observe that we have used two different hypotheses in this study of 
the local problem. We leave out the first one when we study the global 
problem. But keep the hypothesis 2a, constancy of  the dimension of  the 
radical of  the 2-form ~.  But remember  that part  b of  hypothesis 2 holds 
true locally when we assume part  a. 

4. THE G L O B A L  P R O B L E M  

Let Mo be a submanifold of  T ' M ,  dim Mo = n = 2m - too .  For Mo we 
state the Hami l ton-Di rac  problem as follows. 

Is there any vector field Z on T*M tangent to Mo which satisfies 

i*( izoJ - dH) = 0 

where i: Mo-~ T * M  is the natural injection? 

Definitions. Consider the following sets: 

Io = { f e  S (T*M) ;  i ' f =  0} 

dlo = { df  ; f e Io} 

{d/0} = the submodule of  f l I ( T . M )  generated by 
dlo, that is, a e {d/o} if and only if 
a = Y. f i  dgi, with gi ~ Io 

Jo = {X c ~ (  T ' M ) ;  ixto e {d/o}} 

Remark. These sets have the following properties: Given a point x in 
Mo, there exists an open neighborhood U of x in T*M and a family of  
functions d~l, . . . ,  6m e S ( T * M )  such that 

U n Mo= {X C U; ~i(x)--O, i = l , . . . , m o )  

and, moreover,  the following hold. 
1. I f f e I 0  then 

m o 

f l u  = ~ g ~ ] u  
i : 1  

for some gi c S ( T * M ) .  
2. From condition 1 we deduce that if a e dlo, then 

alu = E gi ddp, lu + E ~ dg'lu 
i i 

for some gi e S ( T * M ) .  
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Observe that 

o~lU~o= E g' d~,lU~Mo 

3. For {d/o}, the above conditions imply the following: If/3 �9 {d/o}, then 

= Y~ f '  dg, with g, �9 Io 
i 

Thus 

and therefore 

Hence 

g, lu = ~ hg~jle 
J 

~lu = E f~h~ dckj[~ +2 f~fgj dh~[u 
i , j  i ,j  

/31U~Mo = E fih~ dcbj[u~Mo = Y. k j d~jlU~o 
i ,j  j 

where k j �9 S( T*M). 
4. If  X �9 Jo, then ixw �9 {clio}, hence in U we have ix~o[u =jglu, that is, 

ixo~[ Un~o -- E fih{ dO~l U~Mo = E k~ d~j[ U~o 
i , j  j 

So, if we take the vector fields Xj �9 ~(T*M)  with ixoo = df~j, we have 

r _ v  k~x~l x l ~ o = E ~  , ~ , ~ o - ~  ~ M o  
i , j  j~ 

for some k s �9 S(T*M).  

4.1. Bundles Associated with the Problem 

One has that Jo(Mo)= Ux~Mo Jo(x) with the natural projection on Mo 
is a vector bundle with rank mo on the manifold Mo. The Jo(x) are the 
values of all vector fields in Jo at the point x e Mo. 

Let f~ be the restriction of w to Jo and Ro(x) = rad f~(x) for any x �9 Mo. 

Hypothesis. The subspace rad f~(x) has the same dimension at every 
point x �9 Mo 

Let ml be such dimension. We have ml-< too. 
Let Ro(Mo)=Ux~Mo Ro(x), then Ro(Mo) with the natural projection 

on Mo is a vector subbundle of Jo(Mo). 
Observe that the sections of Jo(Mo) are the vector fields of Jo restricted 

to Mo. 
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Definition. Let X ~ g~ (T 'M)  be the only vector field such that ixo2 = dH 
and let 

ml  = (x ~ Mo; w (X, Y ) (x )  = O, Y ~ Secc Ro(mo)} 

= {x ~ Mo; Yx(H)  = O, Y ~  Secc Ro(Mo)} 

M1 is a submanifold of  Mo and we assume that M1 is not empty. 

Theorem. There exists a section Y of the bundle Jo(Mo) such that: 

1. The vector field Z = X + Y is tangent to M0 at the points of  M~. 
2. i*(izw - dH) = 0 

[that is, if x ~  Mo and v c  TxMo, then ( i z w - d H ) ( v ) = 0 ] .  

Proof The local result we have previously proved gives us the following 
corollary. 

For any point x ~ M0 there exists an open neighborhood U of  x in 
T * M  and a family of  functions ~bl,. �9 �9 ~b~ such that: 

1. Mort U = { x ~  U; ~bi(x)=0, i = 1 , . . . ,  mo}. 
2. I f  X , c ~ ( T * M )  satisfy ix, w=ddJi, then w(Xi,  X j ) (x )=O for x ~  

M o n  U, i-< rn~, j = 1 , . . . ,  too, that is, the vector fields X ~ , . . . ,  Xm, generate 
the radical of  (l, restriction of  ~o to X ~ , . . . ,  X~o, at the points of  Mo n U. 

3. Let M ~ ( U ) = { x ~ M o c ~  U; t o ( X , X ~ ) = O , j = l , . . . ,  m~}, then there 
exists one and only one vector field Y ~  ~ ( T * M )  with Y = Y~>m, fiX~ such 
that the vector field Z = X + Y satisfies (a) Z is tangent to M0 at the points 
of  M1(U),  and (b) i*(izw - d H ) = 0 .  

Observe that iyto = Y~>m, f~ ddp~. 
NOW it suffices to construct a global section. For this let { Ui; i c I} be 

a family of  open neighborhoods with the following properties: 

1. They are solutions of  the local problem. 
2. The family U~ n Mo, i ~ I, is a locally finite open covering of Mo. 

Let {~7i; i c I} be a partition of unity with functions of  S(Mo) subordin- 
ated to the covering. I f  Y~, i c I, are the solutions of  the local problems for 
the open sets U~, then Y = Z  viY~ is a section of  the bundle Jo(Mo). 

Consider, at the points of  M0, the vector field Z -- X + Y. We have: 
1. Z is tangent to Mo at the points of  M~. Indeed, if x e M~ and f ~  Io, 

then 

Z ( f ) ( x )  = ( X  + ~. ~/,Y~)(f)(x) = 5~ r / , (x)((X + Y~)x(f)) = 0 

because M1 c~ Ui = MI( Ui). 
2. i * ( i z w - d H ) = O ,  because if x c  Mo and v~ TxMo, then 

o~(z, v) - v ( / - / )  = E n , (x)o~(  Y,, v) = 0 
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Hence the result follows. �9 

Remarks.  

1. Is there any relation between two different solutions of  the problem? 
Suppose Y and I7" are solutions, that is, the vector fields 

z=x+~ 2=x+9 

satisfy the conditions of  the theorem. Note that Z - , Z  is tangent to Mo and 
satisfies i* ( i ( z_~)w)=O.  Then Z - Z  is a solution of the homogeneous 
problem, that is, the problems in which i * H  = 0. The same is true for Y -  17<. 

2. The vector fields Y~, solutions of  the local problems, are defined at 
every point in T ' M ,  not only in Mo. I f  Mo is closed, then we can extend 
a solution Y defined in M0 to all T * M  by extending the functions ~7;. 

4.2. Conclusion 

As in the local case, we obtain a chain of  submanifolds 

Mo = M 1 =  M2 = . . . 

and, since the situation is the same as in the local problem, we obtain the 
same conclusions. 

4.3. Relation with PCA Algorithm 

Gotay and Nester (1978) make use of  the presymplectic structure 
defined on Mo by the restriction of to. In this paper  I use only the symplectic 
structure of  the phase space T*Q. This structure is easier to use, f rom the 
point of  view of  calculus. In addition, the calculus of  the secondary con- 
straints is made directly. 

I prove that the local structure of  the algorithm is the same as in the 
global situation. The global version is made directly from the local one. 

Finally, the algorithm allows one to calculate the "final" constraint 
submanifold and at the same time the dynamical  vector field on this 
submanifold.  

On the other hand, the PCA algorithm can be made in a presymplectic 
manifold which is not immersed in a symplectic one. 

4.4. An Example 

Take the Lagrangian L : v~+ q3/24 q- q2+ q4 o n  T R  4. We obtain 

M o = { ( q ,  p); ~bl =p2--- 0, th2 =p3 =0 ,  tb3 = p 4 - q 3  = 0 } c  T*R 4 

H = I  2 Zp, - q~ - q] 
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The H a m i l t o n i a n  vec tor  field is X = �89 O/Oql + 2qe O/Op2+ 2q4 c?/Op4 
and  we ob ta in  f rom the cons t ra in ts  

X I  = O/Oq2, X2  = O/Oq3, X3 = O//Oq4 h- 0/0t9 3 

Then  ~b~ is a f irst-class and  ~b2 and  q5 3 are  second-c lass  const ra ints .  
Hence  the only  s econda ry  cons t ra in ts  is X~b~ = 0, that  is, q2 = 0. 

Then we have 

M~ ={(q ,  p) ;  p 2 = 0 ,  p 3 = 0 ,  p 4 -  q3 = 0, q2=0} 

as the new cons t ra in t  subman i fo ld .  

On M1, the  vec tor  fields X~ assoc ia ted  with  the  cons t ra in ts  are second  
class,  hence  there  is no o ther  const ra int .  

The d y n a m i c a l  vec tor  field on M~ is 

Z = �89 O/Oql + 2q40/Oq3 q- 2q4 O~ dp4 

tha t  is, Z is t angen t  to M~ and  Z = X + ~ A iXi. 
This is an example  in which  the p resen t  a lgo r i thm is eas ier  to ca lcu la te  

than  the P C A  algor i thm.  
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